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. " I. INTRODUCTION

In discrete numerical approximations to partial differential equations (PDEs), vector
and scalar functions are defined and differential operators are approximated on a grid. In
this paper we propose solutions to two difficulties that arise in these approximations:

The discrete versions of the Div, Grad, Curl, and Laplacian operators should be
consistent with each other and satisfy the standard vector identities. For example, in
magnetohydrodynamics, the equation for the magnetic fleld B is

0B
E-Vx(uxB), (1.1)

where p is the velocity field. Taking the divergence of this equation reveals that if B is
initially divergence free then it remains so, by the identity Div-Curl = 0. Numerically, if
this identity is not satisfied, the divergence of B drifts during the calculation.

In addition, the discrete Laplacian should be symmetric, positive, consistent and there
should be an elementary way to compute the size of the kernel. In particular it is useful
to know when the discrete Laplacian is positive definite.

When is it appropriate to be computing pointwise function values or average values
and should these values be defined on the cell edges, nodes or centers of the computational
grid? For example, let £ = a and = = b be two adjacent grid points on the real line. If
fo and fp are the values of a discrete function defined at these points, then the discrete

‘ approximation to the first derivative of f

N e R AT (12)

is most accurate at the midpoint (a 4+ b)/2, but there is no grid point there.

We provide answers to these questions using algebraic topology to guide our analy-
sis. Earlier use of topology in the field of electrical networks dates to H. Weyl, 1923[29].
Of particular note are the works of Kron[17], Branin[2], and more recently Dodzuik(7].
Unfortunately their results contain few applications to numerical analysis.

We first translate scalar and vector functions to their differential form equivalents and
consider the computational grid to be an algebraic topological complex. In particular,
the grid consists of 0O-cells, 1-cells, 2-cells, and 3-cells. Then, the DeRham map w — Rw, 7| ey
defined by Rwle) = few where ¢ is a cell, transforms the form w into a linear function f’f' O
on chains, 1 ~cochain. Therefore, vectors and scalars are represented as forms, and |
then mapped §o. their discrete forms (cochains) by the DeRham map: discrete k-forms are _
encoded as k-cell quantities.

Stokes’ theorem states that the exterior derivative is the adjoint of the boundary | &é ,
v gy ;/%?pﬁi}é

operator with respect to the pairing induced by integration. Let (, ) denote the standard | ‘
pairing between chains and cochains. If w is a k-form and e is a k-cell, then R is defined
by (Rw,e) = [, w and Stokes’ theorem can be stated as

. (Rdw, €) :/edw::/aewz (Rw,de) = (6Rw,e) (1.3)
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where d is the exterior derivative, 0 is the boundary operator on chains and ¢ is the
coboundary operator on cochains, thus Rd = ¢ R.

This operator generates the discrete versions of Div, Grad, and Curl operators. The
vector identities correspond to ¢ - § = 0 and follow from the geometric fact that 8- = 0.

Using an inner product on cochains that mimics the standard inner product on forms,
we can define an adjoint §* and hence a discrete Laplacian, A = §6* 4 6*6. By applying a
discrete version of Hodge’s theorem and DeRham’s theorem, we can compute the size of
the kernel of this Laplacian in an elementary way.




II. ALGEBRAIC TOPOLOGY

In this section we review some basic concepts in algebraic topology as they apply to
deriving discrete approximations to differential operators. See Cairns[3] for a complete
exposition.

Our major goal is in the construction of local, accurate, mimetic discrete versions
of the gradient, divergence, curl, and Laplace operators for three dimensional numerical
calculations. Therefore we consider a subset @ € R® where 0Q = B; U B, consists of two
disjoint, smooth, possibly empty boundary components () can just as well be a Riemannian
manifold of any dimension).

The computational grid we will use is a triangulation of © by a simplicial complex.
We first describe a polygon in R%. A k-simplex is an ordered collection of (k + 1) distinct
points in R%, labeled [pop; - - - px] for which we make the (nonessential) requirement that
they be nondegenerate—that they span a k-plane. The boundary operator J is defined as

k .
Olpo -+ ol = 3 (= 1lpo - Y pal

where V means the omission of the i** term. A direct calculation shows that 8- = 0. »

Fig. 1 Please supply caption.

Let Sk denote a particular collection of k-simplicies. Then, a k-chain is a formal linear
combination of elements in S;. That isc € C} if

c= Z aist ,with st € St and a; real .

2

The boundar$ef ¢ is defined by linearity:

Oc = Z a;0s} .

The collection {Cy,C;,C2,C3} is called a complex if for any ¢ € Ck,0¢ € Ck—;. This
gives rise to an exact sequence where 0 : Cx+; — Cj denotes the boundary operator

0‘-002201?—LC222—03*—0 (22)
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on k-chains. The sequence is called exact since Range 9x C Kernel(Jg—1), which follows
from 0-9=0.

Let [po - - - pk] be a k-simplex. The geometric realization of [po - - - p] is defined by

k k
ARt — Ztip,: where th.bz landt; >0
=0 1=0
and it determines the closed convex hull of the points [pp - - - px]. The coordinates ¢; are

called the barycentric coordinates and are used to make the complex K = {Cq,C1,C2,C3}
into a metric space |K]|.

A zero simplex is a point. We require that these points be given an ordering. This
ordering determines an orientation for each simplex. Namely, [po, - - k) has positive ori-
entation if the points require an even number of permutations to order them; otherwise
it has negative orientation. Given a collection of k + 1 points po - pk, and o a permu-
tation of k + 1 symbols, then [pg---pk] = [Psy,** Po,] if ¢ is an even permutation and
[po - Pk] = —[Pag, " Poy] if o is odd. It is important to note that under this association
the boundary operator is still well defined. O Gy —> {:‘g

The k-cycles Z; are the k-chains, cg, with Ok—1ck = 0. The k-boundaries By are
the k-chains bk, such that by = Ock+1 for some ck+1 € Ci41. Because 8-0 =0, By is

a subgroup of Zy. We form the k** Homology quotient group of K over R, Hy(K,R) =
Zi/By. — cecotusiel all, pure Y oyeltes Flead o€ Lw? bolews/tpy Clealied -

A triangulation of Q is a homeomorphism & : |K| — Q (see Fig. 2). Let K be a
triangulation of Q so that L, and Ly are triangulations of B; and Bs where L; € K and
L, € K.

The space of linear functionals on Ck denoted C* = C',‘:' are called k-cochains. The
transpose of 8,6 : C¥ — C**1 defined by (dc,w) = (c,éw) satisfies 6 - § = 0 and thus
forms an exact sequence dual to (2.2). As before, we define the k-cocycles Z k.

0Bttt (2.3)
k-coboundaries, and the k** cohomology group H*(K.R) = Z*/B*.

The collgetion {a}{},i = 1,2, - of positively oriented k-chains forms a basis for the
ince K is finite Cy is finite dimensional and C* is isomorphic to Ck, the
k — Cy being given by

Jw = Z (w,ok)o}

i

o ™,

- where

ok, = 6.

Then a cochain can be written a = Ta;0} and its action on a chain

c=cio}

-4- /
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is
{a,c) = Zaici .
;

From this, the coboundary operator is computed to be

5[?07' t 7pk} = Z{pap()v e 7Pk’]
p

where the sum is overall points p, such that [ppo,---,pk| is a k + 1-simplex.

Define the subspace C§ C C* as those cochains that vanish on L, = C € CE if
(c,e) = 0 for all e € L;. In a similar way construct the groups Z&, BE, and the kth
relative cohomology group Hf = H *(K,L,R).

Geometrically, there is a distinction between elements of C ¥ and of Cy despite the
isomorphism J. An element of C¥ is a function that assigns a real number to each k-
simplex where an element of Cj is a formal linear combination of k-simplicies. Therefore,
a subset of the set of gridpoints is a 0-chain while a numerical function on this grid is a
O-cochain. Similarly, a volume cell grid is a three-chain while a volume cell quantity is a
three cochain. In Sec. III we show that the proper way to store vector-valued functions on
a grid is as one or two cochains.

We denote the relative singular cohomology of Q over R as Hf = H*¥(Q, By, R) and the
DeRham cohomology as H*. For definitions and a proof of DeRham’s theorem (H* ~ H§)
(see Choquet-Bruhat([5]). Here we use the notation where A} are the k-forms with vanishing
- normal component on Bj.

Hyk = ker §/Range 6 on singular k-cochains that vanish on B,
H} = Ker §/Range 6, on k-cochains in K that vanish on L;
H* = Ker d/range d, on Ak,
Sl PeJ= 2 Trr.. 2]
f:-_& R
iemees “Hlewd Co- botrino/tong  0)90 g,

e orewtes) 11 specplied Vo  lowve
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Fig. 2a. Please supply caption.

Fig. 2b. Please supply caption.

Fig. 2c. Please supply caption.




I1II. FORMS, VECTORS, AND SCALARS

¥
. e N
A. Exterior Differentiation ’\i

We assume the reader is fafr’hiliar with the basic notions of the exterior differential
calculus as found in Choquet-Brtthat[5]. Let A*(Q) denote the k-forms on Q, d the exterior
derivative, and d* = (—1)% x d¥, where * is the Hodge star operator. At any boundary
point a form can be decomposed into its tangential and normal components, w = w; + wWa.
If n is the inward pointing unit covector, then wp, = g A n where xg = *w A 7.

Let AY be the k forms w such that

wy = (d'w) = 0on By (3.1a)

wp = (dw)s, = 0on By . (3.1b)

The exterior derivative satisfies d-d = 0 and therefore gives rise to another exact sequence
similiar to (2.3) called the DeRham complex.

The relation between forms and vector-scalar functions is determined as follows. Let
z,y, z be local coordinates. Then a 0-form is a function and a 3-form can be written as w =
function-d(vol). This defines the relation w « function. A 1-formcanbewrittenasw =
Adz + Bdy + Cdz , (3.2)anda2-form

n = Ddy Adz + Edz Adz + Fdz A dy . (3:3)

The correspondences w ++ (A, B,C) and n « (D, E, F') gives rise to relationships in Table
3.1.

Table 3.1
Form Function Structure
0-form - o scalar function
1-form o vector Adz + Bdy + Cdz
2-form vector Ddy ANdz+ Edz Adz + Fdz A dy
3-form scalar function- d(vol) sAcncly 1 o/ B

The exact sequence (DeRham complex) in Fig. 3.1 shows the effect of exterior dif-
ferentiation on the vector-scalar functions corresponding to these forms. The boundary
conditions imposed by A¥ C A¥ are also included in the figure.

If w; and w, are two 1-forms with corresponding vector functions v; and vz, then the
wedge product w; A wy is a two form with corresponding vector function vy x ve. If 7 is
a 2-form with corresponding vector function vs, then the wedge w; A n is a 3-form with
scalar function vy - vs3.



do d, dy
0 — AJ — A — N2 — Ay —0
f—Vf -V XU 7T—V- v
Boundary scalar vector vector scalar
Conditions By :f=0 vxn=0 von=0 =0
at Bg:g}é“‘o v.n=0 vxn=0 f=0

Fig. 3.1. The effect of exterior differentiation on the vector-scalar functions.

B. Discrete Exterior Differentiation
We now develop the discrete analogs to the exterior derivative operators: the diver-
gence, gradient, and curl.

The vector calculus integral identities of Stokes and Gauss,

/V Ud(vol)—/ v-ndS (3.4)

/(va) nd$ = /asv dr (3.5)

become one in the exterior calculus: fﬂ dw = f a0 W where w is a form. This can be written
in a suggestive way: (dw,Q) = (w,08Q).

Thus, exterior differentiation is the adjoint of the boundary operator with respect to
the pairing induced by integration. Furthermore, discrete k-forms are k- cochams defined

by the action.of the DeRham map on k-forms, R : AF — C*.

Ifw e andeeSk,then(Rweo—fwand(Rdweo—fdw-faew—
Rwle)y = ee)o. These relationships imply that Rd = §R. That is, ¢ is a discrete
version of the extenor denvatwe Furthermore, the discrete versions of Grad Curl, and
Div, are &y, 61, 62 respectively. The effects of discrete exterior differentiation are the same
as the ones identified in Fig. 3.1.

A useful consequence of the identity Rd = R is that if dw = 0 then  Rw = Rdw = 0.
This implies that cocycles in the DeRham complex are mapped to cocycles in the discrete
DeRham complex by the DeRham map. ,j

L) : ST »}Q«

. C. An Approximate Inverse to the DeRham Map o 4, z“i
: -8- Lo s e’



The DeRham map R : A¥ — CF maps differential forms to cochains. An inverse
. W C, ko, /\k to this map is needed that translates cochains back to differential forms.
Followmg Dodzulk[ ], let t, be the barycentmc coordinate corresponding to the point p.
Let ¢ = [po - pk| be a k- 51mp1ex where pg - - - p are increasing with respect to the ordering
of K. Then, define Wo € L?A*, the square mtegrable k-forms, by

g Low 00
Arode ! .g;;.,»;:a/ e vl ‘; viééa?}& Fll
preoves) 23 hude Cleotn pesd Si k Lot Zf?’?@ééif Lleaaleets
Lo cteas) #ee Cdeeret 2\ = KIN (< 1)y dbp, Adtp_, Adp Adtp, .| 7 (3.6)
04 Efrarint Ot APALE é}{f’m g; i—0 ‘ ) |

The resulting form W, is smooth with discontinuities at the d — 1 dimensional skeleton of
K. We redefine R on forms defined by W (the range of W). Let 7 be a k-simplex and let
ai,as, a3, - - denote the (k + 1)-simplicies that contain 7 as a boundary component. Then
let Te(ai) be a shift of 7 over into a; by a distance €.

e %é?ﬁ“f@{? L, THAg vlordrin’  Geerniior i o

Fs

.
“

s . .
R e T b THTEs i A OG- PAces:

Ovreed
A Aese ¢S fazy,

. Then, define

Wr = lim W1
To(a;) €0 Jto(as) !
Then define =
1 Ll
(RWo,T) = ;; tg(a;)WT o {;vi%f; = WR (des)

Vo

namely, the average of all such integrals.

W and R have the following properties (Dodzuik[7]):
!@W — 2\{3)@ ; A5 P ;}?,A,{';Agfﬁ{g‘?& Can—

Fodewnsta, +

S > N AR ’
(e} = Tudd gpolares o] A et e g%«”r‘tgf

L0, éﬁé’ C AL gs gl e AP, 4 7{5{;@

(4) W@w /»- w = 0(h) where h is the measure of the grid size.

Equation (4) reflects that not much information is lost under the DeRham map.
Dodzuik’s proof of (4) is valid under successive barycentric subdivisions of an initial tri-
angulation. The authors believe that this estimate holds under the assumption that the

derivatives of the mapping function from the standard simplex to the triangulation are
bounded.

. D. Choosing An Inner Product on Co-chains

-9-



The inner product on k-forms, defined by

(wl,w2> = /w1 /\‘* wa (37)
Q

can be used to define an inner product on C}

&
(Cl,02>1 = /W01 A* We, . (38)
Q

where ¢; and ¢z are two k-cochains. This product is symmetric and positive definite. The
forms We; and Weg, despite having jump discontinuities, are square integrable.

In the Hodge theory of forms, an inner product on k-forms determines an adjoint to
d,d* and the Laplacian A = d*d + dd*. It is symmetric, positive and maps A} to AE. The
boundary conditions imposed imply that d* = (=1)¥*d*.

To form a discrete Laplacian we mimic this for é; : Cé“ — Cé‘"}'l. Let §i* be the
adjoint of 6g:
(61’:‘31702)1 = (Cl,ék,Cg)] 3 (39)

where ) " .
é: . C0+ — CO 5

and define the discrete Laplacian as
Ap = 616-—15:—1 + 650k (3.10)

or without subscripts A = §6* 4 ¢*6. If the metric is the standard Euclidian metric, then
the effect of d* on scalar and vector functidns is the same as that of d. This implies that
T,03,65 are discrete analogs of Curl, Grad, and Div.

In PDEs modeling physical problems, often a vector function is associated naturally
with a 1— formora2-form. This identification -determines whether the vector function
should be encoded in C¢ or CZ. This, in turn, determines the discrete version of Div, Curl,
or Grad to use (see Sec. IX for examples).

-10-
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IV. MIMETIC PROPERTIES PDLEGITID Mg D T o]
A/;"/;The Hodge Decomposition Theorem

/
/

/ The Hodge Decomposition theorem(1],[5] states w € Af, can be decomposed as w =

;jh + df + d*g where Ah=0,f € /\{;'1 and g € /\{)C+1 and
/

dim (ker(A)) = dim(H*) .

This theorem is primarily a consequence of the fact that if 7" is a bounded linear transfor-
mation on a Hilbert space E such that 72 = 0 and we define H = {re E:Tz =T*z =0}

' then E = Range T* @ Range T H. Following [1], let E' = (RangeT & RangeT*)*.
" Then, H C E', but if z € E’, then (Ty,z) = 0 for all y implies that T*z = 0 and similarly

Tz = 0 with the consequence that z € H and we are done. The real proof is complicated
by the fact that d is an unbounded operator on a domain in L2. In the vector calculus,
this theorem implies that any vector function v has a decomposition v = h+ V x w + V¢
where h is harmonic, and ¢ is a scalar. It also implies that any real function has the
decomposition f = g + V - v where g is harmonic.

The discrete Hodge decomposition theorem follows as above and is a consequence of
6 -6 =0 and a chosen inner product on cochains (determination of §*).

To determine the size of the kernel of the Laplacian, note that if 6=h+6f + 6"g
satisfies 0¢ = 0, then ¢ = h+§6f, and the correspondence ¢ « h provides an isomorphism:

Ker (6)/Range(6) ~ Ker (A). It follows that any ¢ € C§ can be decomposed into ¢ =
h+8f+6%g where Ah=0,f € Cklandge C&1and

dim( Ker (Ag)) = dim(HE) . (4.4)

Krzywicki[18] has proven a decomposition theorem of this type for scalar functions when
{2 is the unit square covered by a uniform grid.

Corollary: The size of the kernels of the analytic and discrete Laplacians are the same.

That is, Dim(Ker (Ag)) = Dim(Ker (Ag)).
Proof: Using the notation defined at the end of Sec. II, Dim(HE) = Dim(H§) (Cairns|[3]),

and Dim(H{) = Dim(H*) is a consequence of DeRham’s theorem. Combining the analytic
and the discrete Hodge’s theorems,

—film( Ker (Ag)) = dim(Hf) = dim(H*) = dim( Ker (Ag)) .

that the size of the kernel of the analytic and discrete Laplacians depend
topology of the domain and not the specific nature of these Laplacians.

B. Vector Calculus Identities

For the discrete operators defined in Sec. III, the discrete version of the vector calculus
identities hold exactly. That is, the discrete version of Div, Grad, and Curl satisfy Div-
Curl = 0 and Curl- Grad = 0.

Proof: See Fig. 2. The discrete gradient is &, the curl is 6; and the divergence §;. The
identities are then 8, - §; = 0 and &; - § = 0 or without subscripts ¢ - § = 0. This follows
by duality: (6-6c,b)o = (6¢c,0b)g = (c, 8- Bb)o = 0.

-11-



C. The Wedge Product

Let wy € /\{)c and wp € AP, then the wedge product wy A ws is in A*TP where we use
the same notation to refer to an analogous wedge product on cochains.

If ¢; € CF and ¢y € CF, this cochain wedge product c; Ac; is defined by R(Wey AW ey).
The effect of § on this product is algebraically the same as that of the exterior derivative

on forms: ) .
8(ci1 Aeg) = bey ANea +(=1) ¢y Ndey

This follows from the properties of W and R in Sec. x.
8(cy Aez) = 6R(Wer A Weg) = RA(Weyr AWep) = R(dWey AWea + (=1 *Wer AdWe,

= R(dWey AWey) + (=1 R(We, AdWey)
= R(Wécy A Wea) + (=1 R(We, A Wées)
=dcy ANecy + (~1)kcl Abey .

Forms satisfy commutation relations, Let w; € AP and ws € A, then
w1 Awy = (—1)p+‘1+1w2 Awy . |
Let ¢; € C} and c; € Cf, then
ciNce = (RWer AWey) = R(=1)PT1T Wey A Wey)

= (1P R(Wey A Wey) = (=1)PH ey Agy

This wedge product is nonassociative:
(caAeg)ANes# e A(ea Aes) .

Associativity can be enforced by using the cup product in an oriented complex[1]. This
product satisfies the Leibniz rule but does not satisfy the commutation relations except at
the cohomological level.

D. Chain Maps

Let C* and Dk k = 0,1,2,3 be two cochain complexes. A chain map of degree
zero is a sequence of maps F k. CF — D* for which the following diagram commutes:

Flc
Ck — Dk

1 6k L ok
Fk+1

Ck+1 _,  pk+l

-19-



For the map R : A5 — C¥, the the diagram

Rk
A o= CE
Ldk |
Ryt

/\(’f'H — Cé”’l .

does commute, §R = Rd. The map W : C§ — Af also has a commuting diagram:

Ok
G - A
| 6k 1 dk
W41

k+1 k+1
Cy - Ay

Even though the forms in the image of W are not smooth the theory of curents (DeRham|[6])
demonstrates that they still maintain the same geometric structure as that of the true
DeRham complex.

‘Because the chain maps R : A} — C§ and W : C¥ — Ak are of degree zero they
induce a well-defined map on cohomology as follows. Let F': C' — D be a chain map defined
by a sequence of maps F* : C*¥ — DF where 6% : C¥ — C**1 and §¥ : D¥ — D¥+! are
the coboundary operators. Then with

H*(C) = Ker 6*/Range 61

H*(D) = Ker 6*/Range §%~!

F induces a map:f ks H*(C) — H*(D). To define this map, consider w € C* such that
§¥w = 0. The equivalence class [w] € H¥(C) is defined by

1] = [walif wi —wy =6*1 () () eC* .
For n € D¥, which satisfies 6% = 0, -then [n] is defined by

(m] = [nif m — Ny = sk 1y

-13-



For a € H¥(C), a representative of w € C* so that [w] = a, the map is defined by then
[n] is defined by

F*¥a = F*w] = [FFu] .

The map is well defined since if w satisfies §Fw = 0, then 6% (Fw*) = FFékw = 0. Also
if we choose another representative wy such that [wy] = @, then w — w2 = §¥-1¢, and

[Fkw,] = [FF(w —651¢]
= [F*w — Fk§k=1g] = [Frw — 6KV Fkg)]

Suppose that F : A§ — Ak is a chain map. Then F : Ck — Cf defined by Fc =
RFWe is a chain map because : ‘

§Fc = §RFWc = RIFWe = RFdWe = RFWéc = Féc .

Conversely, if G : C¥ — C§ is a chain map, then G : A¥ — AF defined by Gw = WGRw
is a chain map since

dGw = dWGRw = WOGRw = WG6Rw = WGRdw = Gdw .

Many important operations manifest themselves as chain maps.

The Lie derivative is an important example. The Lie derivative L, : AF — AF s
defined by L, = i(z)d + di(z) where i(z) is'the interior product with respect to the vector
field z. The discrete Lie derivative, L;c = RL w, is also a chain map and

L.c = RL,Wc = Ri(z)dw c + Rdi(z)We = Ri(z)Wéc + 6Ri(z)We = i(z)§ ¢ + 6i(z)c
giving a discrete version of the Cartan formula L, = i(z)d + di(z) with discrete interior

product i(z) = Ri(z)W.

Theorem: Let X denote the space of chain maps of degree —1. Namely, z € X 1s
a sequence of maps T : C* — CK-1, Let L, = 6z + z8. Then under the bracket
[z,y] = L:y=Lyz,X is a Lie algebra.

Proof:

LyL, — L,L; = Ly(8y + y6) — L,(6z + )
= 6L,y + Lyyé — 6Lyx — Lyzé
= 68(Lyy — Lyz) + (Lzy — Lyz)é
= Liz,y
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is used to verify the Jacobi identify:
[z, yle] + [ly, z]z] + [[z,2]z] + = 0.

Thus

[[m,y],z] = Lz y2 = L:[z,Y]
=L ;Lyz—LyL;z— L,(Lyy— Lyx)
=L Lyz—LyL;2—L,L,y+ L.Lyx
and cyclic permutation of z,y, z does the rest.

An important consequence of the Cartan formula L, = z§ + éz is that the induced
map on cohomology L7 is identically zero, L7 = 0. To see this let w € C§ with dw = 0.
Then the class [L;w] = [zéw + dzw] = [fzw] = 0.

Another important example of a chain map is the induced map on K-forms. Let
é: ) — Q be a map from § to itself, then ¢* : A¥ — A¥ is a chain map.
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V. ACCURACY OF THE NUMERICAL APPROXIMATIONS

The composed map W R is an approximate identity W Rw —w = 0(h). The cobound-
ary operator ¢ is consistent with the exterior derivative by Wé Rw —dw = WRdw —dw =

0(h) where O(h) is the order of the grid size. In addition, the error has zero mean
R(WRdw — dw) = RWRdw — Rdw = Rdw — Rdw = 0.

Higher order schemes do seem possible using a § with a larger stencil pattern but this
possibility has not been investigated.
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VI. THE NUMERICAL FRAMEWORK

The standard basis for C* is defined by choosing {e¥,i = 1,2,---} to be an enumera-
tion of all the k-cells such that ef = [po,P1,p2," - Pk| Where pg < p1 < p2 -+ < pk. Recall
that the points have an ordering.

The k-cell o consisting of a permutation of those same points is just %[pg,: - pk]
depending on whether the permutation is odd or even. In this basis the k-cochain

c = E aef
i

(. f"éj et f £ L
. T Je O Bl ,«f'\
18 the Ve(:tor (a17a2’.") * ﬂs’:f >3 ffﬁ\ o W,,Ei .
e a—
M ’:’;}ﬁ: )
he coboundary operator § : C& — Cé“‘*'l has a matrix: oy - g

o B Se recfoue Z gk okl L
A SR b
where the identity § - § = 0 requires that §*+16% = 0 Seri S =

Z 6k+15k =

To determine the matrix representing 6* we relate ( , )o and ( , );. Define the map

k. ck - C* by

—
= Z Til; €; = Z<e'} e ]')16 j / R Tree  feomgf teagh oo
J J
so the matrix values T = (ef,e5);. The identity (T*ei,e;)0 = (ei,e;)1 extends to

(T*a,b)o = (a,b); for all a,b € CF. Using this we have
(T6%a,b)o = (8"a,b)1 = (a,6b)1 =(Ta,6b)o = (8Ta,b)o

or 0T = Té§*. Furthermore T is symmetric, positive definite, and therefore invertible so
that 5

§* = T71oT . (6.1)

< G G \>f = < We, We > Sl L éﬁfi

e > — Vds ,:Af s f{j;a lexr sl ;f
L L Pa I )

flHneor EAL@TIS
peeh Co- Llesnel.
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VII. CALCULATION OF T WHEN K IS A POLYGON

When k is a polygon each k-simplex is defined as the convex hull of k + 1 points in
R"™ We assume for simplicity that the metric is Euclidian. In this case we can compute T
explicitly which gives §* and therefore the Laplacian A = §6* + §*§.

Recall that TE = (ek;,e;)1 where ef and e} are the :"* and j** k-simplicies in the
standard basis. To simplify notation (which will be appreciated shortly) we let o and 7 be
two k-simplicies in the standard basis. Our task then is to calculate (7 ,0);.

Computation of (r,w);.
By definition

(T,0)1 =/w7/\*wa.
Q

) can be written = Ta'e?, where a' = £ 1, then

(r,0)1 = Zai] wr A% wo
el

and it is

wrtweo
el
4

which we calculate now. Let v = [po,pl',b ToeDply Po € p1 < ¢+ < pp be some fixed
n-simplex where p; are points in the underlying R™. Then define

[r,0] = /wr/\* qwo .
\'4

Let 0 = [pi‘ovph.s"'pik] T = [pjo"" DPji where {io,"~ zk} - {Oylv n}7 {jOv"' ]k} (-;
{0,1,--- n}ig.& 41, < -+ < i, and jo < j; < --+ < jk. There are three different cases to
consider.

Case 1. 1,

W10 # 0.
The barycentric coordinates are defined by the map ¢; — Zp;t;, ¢ = 0,1, - n, with

Zti =1.
1=0
Setting
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to=1-) ti,
=1
and plugging in gives
ti— Y (p1—polti,
1=1

which can be used to form a basis for the k-forms. Let {e; - - en} be the standard or-
thonormal basis for R™, and let @Qi; = (pi — po,¢;) and ¢;; = QikQkj(g = QQT), then
g' = (g')i; is the metric in the dual basis d¢;. In these coordinates then

k
wo =K1Y (1) dtiy A~ Adty,
£=0
k
wr = K1Y (=1)t;,dtj, A--- Adt;,
£=0

and

k I, ~+ n A .
*wo = Kl|detQ)] Z(-—l)z Z sign [ ;. } gl e gt ot dt Ve diy,
£=0

r ™1 M

where

3

T

means to surpoverall permutations r with riy; < 7p42 < -+- < rp. Please see (1, page
347] for this fact

Terms iniwT A* wo are of the form

dtjo A dtj, Adtr,_, A--- A dtr,

and are nonzero only if ry;r -+ ¢ = 0(jo,- - Jk) where 0 is a permutation. Thus

k k
wrN'wo = (k!)[zdeth Z Z(—l)m"'e Z sign g0 .. gk, 1o dtycodta A -+ diy
m=0 (=0 6(ja, - jk)
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since
1,2’...n ) Ty Tk 1 Th
sign | X stgn X sign 1 -1
Ty M 1’2n q’s; ,¢k ’rk+1...rn
. [ rycc Tk ]
= sign B _
¢11"'¢k1
= sign ¢ .
Then

k k
W AR _ (K!)?(det Q) $Y (1) S s iod1 .. 4i
L r A* wo M+2 ( 1) Szgngzsg... ¢ '..gk¢k(1+6i(jm)

m=0 £=0 &(Jo--jk)

where § is the Dirac delta function, since

sign (det Q) :
t;,t; dty A---dt, = —————F= iJm) -
/V ¥ Im 1 (TZ:-’Q)' (1+6£J )
Let
iO"'ik
9. :
JoJk

denote the matrix with rows 4g,7; - - - 1 and columns jg - - jx of g. Then

2 ko k PP
/m A o = W S S (-1 et [g o ] (14 8ijm) -

JorJk

Case 2. jo =, i0 # 0.
Then

wr = Kltodt;, A---dt;, + K1Y (=1)™t;,, dteoo - dt;

Ik

and since



and wT = wT, — w7y Where

n
wrg = k(1 — Zd‘ta)dtj1 Ao Adt,
a=1

k k
wTp = k! Z(“l)mt]’m Zdta ANdty A dtjk
m=1 a=1
w7y is nonzero only when a € {j; - -jk}c. Terms in wr, A* wT are of the form
dt;, A---dt;, /\dl‘f,-k_{_1 coedty
and are nonzero only if ry -+ = é(J1,- . Then

k
wre A* wo = (k!)?|det Q) Z Z (—1)tsign gg- -0 ... g Pk (1 — Tt,)dt; A -+ A di,
£=0 ¢(j1-+Jk)

and since

(signdet Q)
t;, dt codty, = —%
/‘./ 14 1 (‘M + 1)' Y

this becomes

(kD)?(det Q) < , | <
wTg A" wo = ]_ ; ALY - SR 1. 7%
/v ’ M+2)! ; ) ). signég g

¢ (J1-dk)

and therefore

. (RD(det Q) o, e o ik
ﬂ/v“”‘”‘ “TE T M o) ;( t)det (gjl"‘jk)

Similarly

k k ¢
/ WTh A* wo = k')Q(det Q) Z Z(“l)m+fz Z szgncb R 1T TR uqﬁk(l + Y )
v M + 2)] g i jm

, m=1 {=0 a ¢(ajri-jr)
(k)*(det Q) <+ i --i
- _1)me ; [ 01Tk } .
(M +2) 1;;( Zde 9 iyeemge ) IF Gieim)
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where

[

2.

a

means summation over a € {J; --- jx}¢. Finally,

/wv'/\*wor:/wra/\*wa-/wa/\*wa.
v 14 1

Case 3. jp =19 = 0.

In this case wo = wo, — wop with

WO = k!(l —_ Ztg)dtil A Clt,'k ,

and
k r
wop = k1Y (=1)'t, Y dti A-eedty,
=1 8
where
-T
8

means summation over 8 € {i; - - ix}°. Now

*W g

Klldet Q1 — Stg) S sign rg - TRt Acedyt
r

and

k T
*woy = k!|det Q| Z(—-l)gtil Z Z sign rgfTi. . g Tigik gt A dt,
=1 s r

Similar arguments as before give
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. 2(k!)2(det Q)

/;/WTG AN woe = W

. (ED?(det@)
/VWT(, N wop = m

Z Sigmp,gnmgimk ,
o(jr1 Jr)

¢ T
(D™ U+ bign YD Y, signg-gft.gitr gt

M=

<y

m=1£=1 a8 ¢(a,ji k)
/ WTq /\*wc'b:Z 1)22 Z sign ¢ - g ’1¢2...gik¢k ,
v ¢=1 B #(jr, gu)

. (k1)?(det Q) IR . e ive
/va"a/\ WOy = = M+2)' Z 1) Z Z 3197’1(]5-91 1...gkk’

a ¢(a,ji - Jk)

and finally

/w'r/\*wcf=/wra/\*w0‘a+/wrb/\*wab~/wra/\*wob—/wrb/\*woa.
. v v v 1% v

Example: We compile these expressions when n = 2. In all cases v = [pg,p1,- " Pn]-

k = 0. We can assume Case 1. Then o = [p;,], 7 = [pj,] and

/ wT A*wo = detQ(l +5,'0j0)
v ‘

4!

k=1 Casel. o= {pio],pil], T = [.pjo’pj).]’ 10 #0, 70 # 0.

/ wrA\*wo
v

k=1. Case 2. ¢ = [pio,pil], tg # 0, 7 = [po, pj1]-

/ oty A wo, = 229 (g5 — gion] |
\'4

d tQ {(1 + 51'0]'0)91‘1 i~ (1 + 5ixjo)gio o (1 + 5ioj1 )gil Jo + (1 + 6i1j1 )gio jo]

3!

. det . o . o
. LWTb N wo= 3! J [(1 + bigjy g7+ gt = (1 +6i1j1)(gzo g )} :
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«

. k= 1. Case 3. az[pio,pil],T—'—‘[Po,Pjﬂ-

det o
/wTa/\*(JJ‘Ta—-‘: ‘f”Q_th7
V 3
. det Q
/w’?'b/\ WTy = T3 (14 8i,5) [ + 9% + 24"
Vv
' det . ,
L‘-‘”‘D A* WTg = _f_é__@_<gz1,l +9“’2) ,

¢ : :
/ WwTe A" wTp = (g17 +g%1) .
v 3

k = 1. The only nontrivial case is Case 2. ¢ = 7 = v. Let g denote the matrix with
elements. Then ¢*/

/wra A* wT, = 2d?Q -det9g¢g 0,
t det
. /wTa A* wrp = Ei—f-é—g— -[2det (g) + 2det g — (—det g) — (—detg)] = CB‘Q x 6detg ,
det det

/w'ra A" wrp = 83Q [—det g + (—detg)] = — 63‘Q x 2det g .

Now
/ w'r/\*w'r:/ wTe A* Wy =/ WTa/\*LUTb—Z/ wTe A wTp
\'4 \'4 Vv |4
=12 x det & x det g
3!

but

1 1
dets = T3Q0") = derQyr

so that this equals

° .

3detQ  detQ
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This last result can be derived more simply. In general, let dt = dt; A dty -+ dtu, and
u = det Qdt be the volume element. Then a property of the Hodge star operator is that

*u=1. Now

(n!)? (n!)? n!
A" =t [ dt A" p= = —,
/ wrNwr=omm | AN EE 550 ) ¥ T G
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VIII. EXPLICIT FORMULAS FOR THE DISCRETE DIFFERENTIAL OPERATOR

A. Divergence

B. Gradient

C. Curl

D. Laplacian

Applica;f “arise when the differential equations combined with either the vector
identities or the geometry of the Hodge decomposition result in consequences for the state
functioln itself.

A. Magnetohydrodynamics
The equation for the magnetic field B in MHD is

0B
_a_t"—vx(iu'XB)a
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where p is the velocity fleld. Taking the divergence of the equation reveals that

d 0B -
E(V-B)_.VXB?—V-VX(/JXB):O

with the consequence that if B is initially divergence free it remains so.

The invariant form of this equation is

0B*
ot

=d"(uN B7)

where y is the velocity 1-form, B* is the magnetic field 1-form derived from B, the magnetic
field 2-form.

The numerical version of this equation i§6tB* = 6"(u A B*). If §*6; = 6,6, then
6:(6"B*) = 6"6,B* =§*6"(u AN B*)= 0

by the identity 6*6* = 0. Thus if §*B* = 0, B* is numerically divergence free, then it
remains so.

B. Incompressible Fluid Mechanics

The equations for incompressible fluid flow with constant density are

1
Mt+ﬂ-—Vu+;—-#Vu=0,
Vou=0.
When written invariantly they become

© dur
Ot

1 d
+ Luu” = sdul’ + Ly udd + d*d)ut =0,
p

d*u* =0,

where Lu is the Lie derivative with respect to the vector field u and u* is the velocity
1-form. A discretization of these equations is

§
Seu* + Lyu” — 6 |ul? + -;3 + u(66% +6*8)u* = 0
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*u*=0.

Recall that any l-cochain w has the decomposition w = h + 6 f + 6%y, which can be
written w = ¢ + 6*¥ where §*¢ =0 (let & = f, ¢ = h+ 6"g). Let P(w) = ¢ be the
orthogonal projection onto the subspace of cochains ¢ and that 6*¢ = 0. Then these two
equations reduce to a single evolution equation

6iu™ + P(Lyu™ + pé*éu*)=0.

Consequently, if §t6* = 6", then

8;6% = §*6u* = —§"P (Lyu™ + pé*6u*) =0

since

*P=0,
and if u* begins divergence free (6*u* = 0), then it remains so.

X. SUMMARY AND CONCLUSIONS
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NOTATION

m

U)
o
=

oD A4

(05 R y RS
Q)“ -~ .
o+

[

0 €y

-cell

B

60? 517 62
8y,63,63*
AF(9)

Meaning
gradient (analytic form)

divergence (analytic form)

curl (analytic form)

d*d + dd*, the Laplacian

the domain of interest

the domain of interest

the (7,7)-th cell in Q

boundary of {2

boundary of {2; ;

boundary components of 2,90 = B; U B,
partial derivative with respect to ¢

the DeRham map, Rw (e) = [, w

a form

a cell

basic building block of the topology
boundary operator on chains, d = (8, 01,02, 0s)
coboundary operator on cochains :

,)standard pairing between chains and cochains

= §6* + 6*, 6, discrete Laplacian )
the discrete gradient, curl and divergence operators
discrete divergence, curl, and gradient :

a k-form on 2
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